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The Water Wave Problem

I Inviscid, incompressible, irrotational fluid in Ω(t), t ≥ 0,
under influence of gravity.

I Air above fluid and a free interface
∑

(t), t ≥ 0, separates the
two.

I Motion of fluid is described by

vt + v · ∇v = −∇P − k on Ω(t), t ≥ 0,
div v = 0, curl v = 0 on Ω(t), t ≥ 0,
P = 0 on

∑
(t),

(1, v) is tangent to the free surface (t,
∑

(t))

Lp estimates for a trilinear SIO motivated by C(2)
A

The Water Wave Problem



The Water Wave Problem

I Inviscid, incompressible, irrotational fluid in Ω(t), t ≥ 0,
under influence of gravity.

I Air above fluid and a free interface
∑

(t), t ≥ 0, separates the
two.

I Motion of fluid is described by

vt + v · ∇v = −∇P − k on Ω(t), t ≥ 0,
div v = 0, curl v = 0 on Ω(t), t ≥ 0,
P = 0 on

∑
(t),

(1, v) is tangent to the free surface (t,
∑

(t))

Lp estimates for a trilinear SIO motivated by C(2)
A

The Water Wave Problem



The Water Wave Problem

I Inviscid, incompressible, irrotational fluid in Ω(t), t ≥ 0,
under influence of gravity.

I Air above fluid and a free interface
∑

(t), t ≥ 0, separates the
two.

I Motion of fluid is described by

vt + v · ∇v = −∇P − k on Ω(t), t ≥ 0,
div v = 0, curl v = 0 on Ω(t), t ≥ 0,
P = 0 on

∑
(t),

(1, v) is tangent to the free surface (t,
∑

(t))

Lp estimates for a trilinear SIO motivated by C(2)
A

The Water Wave Problem



Theorem (Sijue Wu, 2009)

Let initial interface be a graph z(α, 0) = α+ iεf (α), initial velocity
zt(α, 0) = εg(α), α ∈ R where f , g are smooth and decay fast at
infinity.
There exist ε0 > 0, T > 0, depending only on f and g such that
for 0 < ε < ε0, the initial value problem of the 2-D water wave
system has a unique classical solution for a time period [0, eT/ε].
During this time period, the solution has the same regularity as the
initial data and remains small, and the interface is a graph.
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I Variables related through the double layer potential operator,
K .

I If u = Kv then need to show Lp estimates of the type

‖Γu‖p ≤ C‖Γv‖p
where Γ is a differentiation operator.

I The core problem is finding Lp estimates for the commutator
[Γ,K ].

Lp estimates for a trilinear SIO motivated by C(2)
A

The Water Wave Problem



I Variables related through the double layer potential operator,
K .

I If u = Kv then need to show Lp estimates of the type

‖Γu‖p ≤ C‖Γv‖p
where Γ is a differentiation operator.

I The core problem is finding Lp estimates for the commutator
[Γ,K ].

Lp estimates for a trilinear SIO motivated by C(2)
A

The Water Wave Problem



I Variables related through the double layer potential operator,
K .

I If u = Kv then need to show Lp estimates of the type

‖Γu‖p ≤ C‖Γv‖p
where Γ is a differentiation operator.

I The core problem is finding Lp estimates for the commutator
[Γ,K ].

Lp estimates for a trilinear SIO motivated by C(2)
A

The Water Wave Problem



I Sijue Wu faces integrals of the type

p.v .

∫
R

F

(
A(x)− A(y)

x − y

)
Πn
i=1(Bi (x)− Bi (y))

(x − y)n+1
f (y) dy

I Lp estimates are known if A′,B ′i ∈ L∞(R) for i = 1, . . . , n and
f ∈ L2(R).

I Novelty in Sijue Wu’s paper is that she faces B ′1 ∈ L2(R).

I Her setup is A′,B ′i ∈ L∞(R) for i = 2, . . . , n, B ′1 ∈ L2(R) and
f ∈ L∞(R).

I Bounds can be obtained using T (b) theorem.
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Calderón Commutators

Definition
The k-th Calderón commutator, k ∈ {1, 2, 3, . . .}, is given by

C(k)
A f (x) =

∫
R

1

x − y

(
A(x)− A(y)

x − y

)k

f (y)dy

where A is Lipschitz and A′ ∈ L∞(R).

I Coifman and Meyer showed in 1975

C(k)
A : Lp → Lp for 1 < p <∞

for k = 1, 2, . . .
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Bilinear Hilbert Transform

I
A(x)− A(y)

x − y
=

∫ 1

0
A′(x + α(y − x))dα

I Calderón wrote

C(1)
A f (x) =

∫
R

(
A(x)− A(y)

x − y

)
(x − y)−1f (y)dy

=

∫ 1

0

∫
R

A′(x + α(y − x))(x − y)−1f (y)dydα

=

∫ 1

0

∫
R

A′(x + αt)f (x + t)
1

t
dtdα
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I The Bilinear Hilbert Transform is defined as

BHTα(f1, f2)(x) = p.v .

∫
R

f1(x + αt)f2(x + t)
1

t
dt

Theorem (Lacey and Thiele from 1997 and 1999)

Let α /∈ {0, 1}, 1 < p1, p2 ≤ ∞ and
2

3
< p :=

p1p2

p1 + p2
<∞. Then

there exists a constant Cα,p1,p2 such that

‖BHTα(f1, f2)‖p ≤ Cα,p1,p2‖f1‖p1‖f2‖p2

for all f1 and f2 in S(R).

I Applications to AKNS systems.
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Trilinear Hilbert Transform

C(2)
A f (x) =

∫
R

(
A(x)− A(y)

x − y

)2

(x − y)−1f (y)dy

=

∫ 1

0

∫ 1

0

∫
R

A′(x + α1t)A′(x + α2t)f (x + t)
1

t
dtdα1dα2

I The Trilinear Hilbert Transform is defined as

THT~α(f1, f2, f3)(x) = p.v .

∫
R

f1(x +α1t)f2(x +α2t)f3(x +t)
1

t
dt

I Open question: Find Lp estimates for THT~α.
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Main Theorem
Define

Tβ(f1, f2, f3)(x) =

p.v .

∫
R

(∫ 1

0
f1(x + αt)dα

)
f2(x + βt)f3(x + t)

1

t
dt

Theorem (P.)

Let β /∈ {0, 1}, 1 < p1, p2, p3 ≤ ∞,

1

2
< p :=

p1p2p3

p1p2 + p1p3 + p2p3
<∞ and

2

3
<

p2p3

p2 + p3
≤ ∞.

Then there exists a constant Cβ,p1,p2,p3 such that

‖Tβ(f1, f2, f3)‖p ≤ Cβ,p1,p2,p3‖f1‖p1‖f2‖p2‖f3‖p3

for all f1, f2 and f3 in S(R).
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Future Applications?

I Motivated by Sijue Wu’s operator it would be interesting to
obtain Lp estimates for

p.v .

∫
R

F

(
A(x + t)− A(x)

t

)
b(x + βt)f (x + t)

1

t
dt

I First need Lp estimates for

p.v .

∫
R

(
A(x + t)− A(x)

t

)m

b(x + βt)f (x + t)
1

t
dt

with polynomial bounds in m.

I Result on operator on previous slide is the first step, showing
a wide range of Lp estimates for the case m = 1.
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